
Redefining Natural Language: From ℵ0 to 2ℵ0

Ramon Padilla-Reyes
Charles Woodrum

February 18, 2024

Abstract

We argue that language should organically permit expressions of count-
ably infinite length, and thus that the size of our language is 2ℵ0 . Abstract
formalism of language have brought much technical understanding to the
fields of syntax, semantics and pragmatics. In this paper, we explore,
through an abundance of proofs, the size of all possible human utter-
ances. Be it a specific language or all languages. We will show that the
set of all possible sentences has size ℵ0 unless either the length of the
sentence can be infinite or the set of all possible words is uncountably
infinite. This is true for even the most permissive grammatical rules and
the most expansive vocabulary possible. The fact that our arguably un-
countable world must be described by a countable system of language
may have interesting implications for philosophy and metaphysics, but
that will not be addressed here. This work aims to be a definitive explo-
ration of the possible cardinalities of language, depending on the size of
utterances allowed by the axioms of the language.

1

1 Introduction

The study of language has intrigued scholars across various disciplines for cen-
turies. Linguistics, philosophy, and mathematics have each contributed unique
perspectives. Yet the intersection of these fields presents untapped potential for
groundbreaking discoveries. This paper delves into one such intersection: the
mathematical cardinality of language. Traditionally, language has been viewed
through the lens of countability, bound by the finiteness of grammar and vocab-
ulary. However, this exploration challenges the existing paradigm, proposing
a novel perspective that considers language as potentially uncountable under
specific circumstances.

The traditional view of language is that it is a set with cardinality ℵ0 (CI-
TATIONS NEEDED). This standpoint has aligned well with the constraints of
finite grammatical structures and a countable vocabulary. This perspective, is
effective in its consistency with observed linguistic patterns. However, it may
not encapsulate the true breadth and adaptability of natural language. To ex-
plore this, we divide this paper into two sections. In section I, we introduce
scenarios where language transcends these assumed boundaries—particularly.
Then in section II, we will pay close attention when considering sentences of
infinite length and an uncountably infinite vocabulary. Under these conditions,
we hypothesize that the size of language expands dramatically, reaching the
dimensions of 2ℵ0 .

Our argument is supported by a series of mathematical proofs, each care-
fully constructed to test the limits of language’s cardinality. These proofs are
not mere academic exercises; they represent a fundamental shift in understand-
ing language’s capacity to represent and articulate the human experience. In
redefining the bounds of language, we open new avenues for linguistic theory,
computational linguistics, and even philosophy. The implications of a language
system that can accommodate expressions of infinite complexity are profound,
suggesting new ways of conceptualizing thought, communication, and informa-
tion processing.

By rigorously exploring these theoretical possibilities, this paper aims to not
only redefine our understanding of natural language’s size but also to stimulate
further interdisciplinary exploration at the nexus of linguistics, mathematics,
and philosophy. The journey ℵ0 to 2

ℵ0 is not just a mathematical transition—it’s
a conceptual leap towards appreciating the unbounded potential of language as
a tool for human expression and understanding.

2 Section I

Note before we begin that sentence length can refer to the number of characters
or the number of words. In this paper, the term “sentence length” will refer to
the number of words in a sentence unless otherwise noted. When we wish to
refer to a sentence’s character length, we will use the term “sentence character
length”.

2

Vocabulary Size Sentence Word Length Size of Language
Finite Finite ℵ0

ℵ0 Finite ℵ0

2ℵ0 Finite 2ℵ0

Finite ℵ0 2ℵ0

ℵ0 ℵ0 2ℵ0

2ℵ0 ℵ0 2ℵ0

Table 1: A table of the possible vocabulary and sentence length, and the re-
sulting size of natural language. Each of the results will be proven separately.
“Finite” refers to sentence word length or vocabulary size that is unbounded
but finite, i.e. any finite length but not infinite length.

Theorem 2.1. Grammatical sentences can have unbounded length.

Proof. Consider just one obviously grammatical sentence “The mother of the
mother of the mother ... fell. For all k ∈ N, we can refer to the mother in the
kth generation with the sentence remaining grammatical. Therefore ∀n ∈ N, we
can produce a sentence whose length is greater than n, so grammatical sentence
length is unbounded. Furthermore, the kth generation can be put into one-to-
one correspondence with the natural numbers, meaning that the cardinality of
the set of all such sentences is ℵ0. A grammar rule permitting only sentences
of this form is taken to be the baseline “most restrictive” grammar rule in
upcoming arguments, so that all realistic grammar rules can produce a greater
abundance of sentences than this one.

Theorem 2.2. With an unbounded, finite vocabulary and an unbounded, finite
sentence length, |Natural Language| = |N|.

Proof. Let the vocabulary of language be denoted V and let the size of V (the
number of words available for sentence construction) be some N ∈ N, so |V | =
N . Let the set of all grammatical sentences be G. Each sentence must be finite,
but there is no maximum or minimum sentence length. The grammar rule that
results in the largest G is simply the rule that any finite combination of words
is a grammatically correct sentence. In this case, it is possible to enumerate
all possible sentences. There is one sentence of length 0, N of length 1, N2 of
length 2, and Nk possible sentences of length k for all k ∈ N.

Let Sk be the set of all sentences of length k. |S0| = 1 and |Sk| = kN ∀k ∈ N.
We note that

G =

∞⋃
k=0

Sk (1)

and we see that since G is a countable union of finite sets, |G| = |N|. If we let the
set of all grammatical sentences according to some grammar rule r be denoted
Gr, we must have Gr ⊂ G, which implies |Gr| ≤ |G|. We know from Theorem
2.1 that even the most restrictive grammatical rules can admit countably many
sentences, so |Gr| ≥ N, and thus we have |Natural Language| = |N| = ℵ0

3

The question might arise “What if we have an infinite vocabulary?”. In the
case where the vocabulary is uncountable, we can simply have a sentence of
length 1, and the set of all such sentences is uncountable, and thus we have
|Natural Language| = 2ℵ0 .

However, the number of all constructed human words that are not numbers
must be finite, since we could, in principle, list all of the words ever uttered
or written by an human throughout all of human history and still generate a
finite list. Adding the natural numbers, N, to the list of human words creates a
countably-infinite vocabulary, since all natural numbers find themselves in the
list of human words, and the set of all natural numbers is obviously countably-
infinite. Adding the rational numbers to human vocabulary has the same effect,
since Q is also (less-obviously) a countably-infinite set. Adding the irrational
numbers I = R\Q to human vocabulary is only possible if we admit sentences
of countably infinite length. Each irrational x ∈ I is a non-terminating, non-
repeating decimal, and its full expression (counted as a single word) requires
countably-infinitely many characters, which requires the admission of sentences
of countably infinite character length but not necessarily infinite word length.
Let us consider the case where we admit all human words and utterances and
all natural numbers in our vocabulary, but still require that sentences have a
finite, unbounded length.

Theorem 2.3. With a countably infinite vocabulary and an unbounded, finite
sentence length, |Natural Language| = |N| = ℵ0.

Proof. Let the vocabulary from which we construct sentences be denoted V
with |V | = |N|. Again, we consider the set of all grammatical sentences G with
the most permissive grammar rule. Just as before, we denote the set of all
sentences of length k with Sk. Again |S0| = 1. However, |S1| = |N|. Further
|S2| = |S1⊗S1| = ℵ0, (the union of two countable sets is countable). From this,
we see that |Sk| = |N| ∀ k ∈ N. This means we again have

G =

∞⋃
k=0

Sk (2)

This time, each Sk is of countable cardinality, and the countable union of count-
able sets is countable, so |G| = ℵ0. As in Theorem 0.3, any Gr must have smaller
cardinality than G, but, from Theorem 0.1, still must have countably many sen-
tences, so |Gr| ≤ ℵ0.

It is useful at this point to argue in favor of the inclusion of sentences that are
not just finite but unbounded in length, but infinite in length. Consider the
decimal expansion of π = 3.14159... which is a non-repeating, non terminating
decimal. One can express this number as a sentence saying The first digit after
3 of the ratio between a circle’s circumference and its diameter is 1, then 4,
then 1, Just as no finite representation of π can ever completely express the
fullness of a truly infinite number, no finite sentence can fully explain the ratio
between a circle’s circumference and its diameter. Indeed, if human language

4

is expected to be able to express fully the ideas created in the human mind, it
must necessarily include all those ideas expressed in mathematics. As we have
just shown, even a simple example such as this demands the inclusion of infinite
sentences.

It could be argued that infinite sentences are meaningless since they can
never be fully written down, said aloud, or expressed with a computer, but the
same can be said for all non-repeating, non-terminating decimals, and we still
wish to include in mathematics the existence of such numbers. Furthermore, if
our world exists in an uncountable reality, any full expression of the existence of a
particle would also demand the inclusion of infinite sentences. The fact that our
infinite sentences can never be fully grasped by a human or computer is akin to
the fact that the full expression of numbers like π can also never be fully realized
by man or machine and that the full knowledge of a particle’s location or history
also remains out of reach. Any thoughts expressible with language must be
confined to an at-best countably infinite subsection of an uncountable universe.
The philosophical and scientific implications of this limitation are outside the
scope of this paper, but those pondering the language-based revolution of AI
and those contemplating the philosophies of human thought might find this
highly thought provoking.

Theorem 2.4. With finite vocabulary and countably infinite phrases, and, thus,
countably infinite sentences, |NaturalLanguage| > |N|.

PROOF 1

Proof. Consider sentences of the form The first digit is b1 and the second digit
is b2 and the third digit is b3... where bj is some digit in {0, 1, .., 9} Sentences
of this form (if allowed to go on indefinitely) form a one to one correspondence
between all the numbers on the interval [0, 1], and thus the set of all such
sentences is grammatically correct (assuming the admission of infinite sentences)
but uncountable in number.

If we wish to form a sentence that does not rely on numbers at all, but
on an extended noun phrase. Let 0 correspond to Alice and 1 correspond to
Bob, and consider the set of all numbers in [0, 1] written in base two. For a
given number 0.b1b2b3 · · · we can form a unique grammatical sentence for each
such number by creating a sentence of the form b1 thinks that b2 thinks that b3
thinks that...the grandmother fell. We allow this phrase within the sentence to
be finite but unbounded (good for terminating decimals) or infinite in length.
If any adjacent numbers are the same (say bj = bj+1), we adjust the sentence
to say that ...thinks that bj thinks that they think that bj+2 thinks that...the
grandmother fell.. This can be extended as far as is needed and still remain
grammatical. For example, the number 0.00010000... (a terminating number
in base two equivalent to 1/16) would be equivalent to Alice thinks that she
thinks that she thinks that Bob thinks that the grandmother fell. Now, without
invoking numbers anywhere in the actual sentences, we can create a one-to-one
correspondence between the numbers in [0, 1] and this set of sentences. Letting
the set of all such sentences be denoted G1 we note that G1 ⊂ Gr where Gr

5

is the set of all grammatical sentences according to some grammar rule r that
permits infinite and finite word length. Thus |G1| = 2ℵ0 ≤ |Gr|. We seek to
know |Gr|. To do this consider the set G as before in Theorem 0.2, the set with
a completely permissive grammar rule (any combination of words is grammat-
ical, this time allowing for infinite sentence length). We will break this down
into three cases based on vocabulary size to prove the last three rows of the table.

Case 1: Finite Vocabulary Size

Let the size of the vocabulary (the number of words allowed in lan-
guage) be some N ∈ N. The set G corresponds to the union of the
sets of all sentences of length k < ∞ (each denoted Sk) with the set
of all sentences of infinite length denoted S∞. That is,

G =

∞⋃
k=0

Sk ∪ S∞ (3)

For each k, |Sk| = Nk. However, for S∞, we have a set that is
equivalent to a base N representation of all numbers in [0, 1] that
has uncountable cardinality. Since we have a countable union of
finite sets and one uncountable set, the cardinality of G is also 2ℵ0 .
Since Gr ⊆ G, |Gr| ≤ |G|. Thus |G1| = 2ℵ0 ≤ |Gr| ≤ |G| = 2ℵ0 ,
which implies |Gr| = 2ℵ0

Case 2: Countably Infinite Vocabulary Size

Now let the size of the vocabulary V be ℵ0, which could correspond
to the case of all human words plus all the integers. In this case,
we again consider the size of G, the most general grammar permit-
ting any combination of words as grammatical, whether of finite or
infinite length. The set of all sentences of size k is Sk, and the set
of all sentences of infinite length is S∞. Each Sk can be written
as Sk = {(v1, v2, ..., vk)|vj ∈ V ∀j} = V ⊗k. Since |V ⊗k| = ℵ0, the
cardinality of each Sk is ℵ0. Meanwhile, S∞ can be expressed as
S∞ = {(v1, v2, ...)|vj ∈ V }. This set is uncountable since, if given
a list of sentences {V1, V2, · · · } with each Vi = vi1vi2vi3 · · · where
vij ∈ V we can create a sentence S = s1s2s3 · · · where

si =

{
yes if vii = no,

no otherwise.
(4)

This produces a sentence that is grammatical according to G but
does not match any of the elements in the list because the ith element
of S never matches the ith element Vi, thus making G uncountable.
Since we again have |G1| = 2ℵ0 ≤ |Gr| ≤ |G| = 2ℵ0 , we see that Gr

must again have cardinality 2ℵ0 .

Case 3: Uncountably Infinite Vocabulary Size

6

Now let |V | = 2ℵ0 , which could correspond to all human words plus
the real numbers, and the length of sentences be finite or count-
ably infinite. Once again, consider the most general grammar rule
allowing all combinations of words as grammatical sentences. The
set G of all such sentences is the set of all sentences of finite length
combined with the set of all sentences of infinite length, just as in
Case 2 above. Here, however, each Sk has cardinality 2ℵ0 since
a finite Cartesian product of an uncountable set is also countable.
The case for S∞ is perhaps less obvious. We can represent S∞ as
{(v1, v2, ...)|vi ∈ V }. Since V has uncountable cardinality, we can
form a one-to-one correspondence between all v1 ∈ V and all num-
bers in [0, 1) and a one-to-one correspondence between all v2 ∈ V
and all numbers in [1, 2) and so forth for all vi, so this infinite Carte-
sian product has the same cardinality as the interval [0,∞), which
has cardinality 2ℵ0 , so |G| = 2ℵ0 . The set of sentences with a gram-
mar rule more restrictive than that in G but less restrictive that that
of G1 called Gr as before has cardinality between G1 and G. Since
we again have |G1| = 2ℵ0 ≤ |Gr| ≤ |G| = 2ℵ0 , we see that Gr must
again have cardinality 2ℵ0 .

3 Section II

Universal Algebra and Natural Language

Definition 1 (Universal Algebra). A universal algebra A is defined as an or-
dered pair (A,F) where:

• A is a non-empty set (termed the universe of A).

• F is a set of n-ary operations on A.

For every operation f ∈ F that maps from An to A:

f : An → A

every tuple (a1, a2, . . . , an) ∈ An has its image f(a1, a2, . . . , an) in A.

Definition 2 (Sentence Equality). Two sentences s1 and s2 in the set S are
equal if and only if, for all i, the ith word in s1 is the same as the ith word in
s2. Formally,

s1 = s2 ⇐⇒ ∀i, wordi(s1) = wordi(s2)

Theorem 3.1. Within a natural language universal algebra with an adjective
set A of arbitrary size, there exists a set S such that the algebra necessarily
generates an infinite subset of S composed of sentences of infinite length (along
with finite sentences).

7

Proof. Assume a grammatical rule of adjective stacking. Given any adjective
a ∈ A, the linguistic structure “The a cat” is a valid member of S. By the
closure property of the universal algebra, this rule can be applied recursively,
allowing us to create an infinite sequence of sentences in S:

The a cat, The a a cat, The a a a cat, . . .

Thus, for every adjective in A, there exists an infinite sequence of sentences
of increasing length in S. As A is arbitrary in size, this further solidifies the
presence of an infinite subset of S composed of sentences of infinite length in
the system.

Any observed bounded nature of sentences in practical settings is due to
external social and cognitive constraints, not a limitation of the inherent math-
ematical properties of the natural language system. Given the previous theo-
rem, the algebra of natural language theoretically supports the creation of an
infinite subset of S composed of sentences of infinite length. However, in prac-
tice, linguistic expressions are kept finite due to human cognitive limitations
such as memory and attention span, in the same way that non-repeating, non-
terminating decimals exits, but are truncated due to the finite nature of humans
and computers. These constraints are external to the algebraic structure of the
language and are determined by the human users of the language.

4 Sentences with Infinite Adjective Stacking

The following sentences are constructed using the adjectives: black, grumpy, old,
fat, lazy, grey, happy, furry, slim, and tiny. They exhibit an infinite adjective
stacking using ellipsis:

1. The black black black black black black black ... cat leaped.

2. The grumpy old grumpy old grumpy old grumpy old ... cat leaped.

3. The fat lazy fat lazy fat lazy fat lazy ... cat leaped.

4. The grey happy grey happy grey happy grey happy ... cat leaped.

5. The furry slim furry slim furry slim furry slim ... cat leaped.

6. The tiny black tiny black tiny black tiny black ... cat leaped.

7. The old fat old fat old fat old fat old fat ... cat leaped.

8. The lazy grey lazy grey lazy grey lazy softred grey lazy grey ... cat leaped.

9. The happy furry happy furry happy furry happy furry happy furry ... cat
leaped.

10. The slim tiny slim tiny slim tiny slim tiny slim tiny slim ... cat leaped.

8

4.1 Binary Representation

Syntax categories are represented as follows:

• Noun (N) → 10

• Adjective (Adj) → 01

• Verb (V) → 00

Words are represented by unique binary codes:

cat (N) : 10

black (Adj) : 01

grumpy (Adj) : 01

old (Adj) : 01

fat (Adj) : 01

lazy (Adj) : 01

grey (Adj) : 01

happy (Adj) : 01

furry (Adj) : 01

slim (Adj) : 01

tiny (Adj) : 01

leaped (V) : 00

Original Binary Adjective Flipped Binary New Adjective
01 0100 black 01 1011 fat
01 0110 old 01 1001 furry
01 0111 fat 01 1000 grumpy
01 1010 happy 01 0101 tiny
01 1011 furry 01 0100 old
01 1001 grey 01 0110 slim
01 1000 lazy 01 0111 black
01 1100 grumpy 01 0011 lazy
01 1101 slim 01 0010 grey
01 1110 tiny 01 0001 happy

4.2 Diagonal Argument

Not flipped:

1. The 01 01001 01 0100 01 0100 01 0100 01 0100 01 0100 ... 10 1001
00 0010.

9

2. The 01 0101 01 01102 01 0101 01 0110 01 0101 01 0110 ... 10 1001
00 0010.

3. The 01 0111 01 1000 01 01113 01 1000 01 0111 01 1000 ... 10 1001
00 0010.

4. The 01 1001 01 1010 01 1001 01 10104 01 1001 01 1010 ... 10 1001
00 0010.

5. The 01 1011 01 1100 01 1011 01 1100 01 10115 01 1100 ... 10 1001
00 0010.

6. The 01 1101 01 0100 01 1101 01 0100 01 1101 01 01006 01 0100 ... 10 1001
00 0010.

7. The 01 0110 01 0111 01 0110 01 0111 01 0110 01 0111 01 01107 01 0111
... 10 1001 00 0010.

8. The 01 1000 01 1001 01 1000 01 1001 01 1000 01 1001 01 1000 01 10018
01 1001 ... 10 1001 00 0010.

9. The 01 1010 01 1011 01 1010 01 1011 01 1010 01 1011 01 1010 01 1011
01 10109 01 1011 ... 10 1001 00 0010.

10. The 01 1100 01 1101 01 1100 01 1101 01 1100 01 1101 01 1100 01 1101
01 1100 01 110110 01 1101 ... 10 1001 00 0010.

From the list of binary representations of sentences, we extract a diagonal:

01 0100 01 0110 01 0111 01 1010 01 1011 . . .

Flipping the bits yields:

01 0111 01 0101 01 0100 01 1001 01 1000 . . .

4.3 Decoding the Sentence

Matching the flipped bits with our table:

Original Binary Adjective Flipped Binary New Adjective
01 0100 black 10 1011 fat
01 0110 old 10 1001 furry
01 0111 fat 10 1000 grumpy
01 1010 happy 10 0101 tiny
01 1011 furry 10 0100 old
01 1001 grey 10 0110 slim
01 1000 lazy 10 0111 black
01 1100 grumpy 10 0011 lazy
01 1101 slim 10 0010 grey
01 1110 tiny 10 0001 happy

10

Using the new sequence, we get the following table with the bits flipped:
The list with the flipped bits below. We flip each binary code associated

with an adjective. For example, 0100 will become 1011. Remember that no
matter what, the flipped bit corresponds to another unique adjective.

1. The 01 10111 01 0100 01 0100 01 0100 01 0100 01 0100 ... 10 1001
00 0010.

2. The 01 0101 01 10012 01 0101 01 0110 01 0101 01 0110 ... 10 1001
00 0010.

3. The 01 0111 01 1000 01 10003 01 1000 01 0111 01 1000 ... 10 1001
00 0010.

4. The 01 1001 01 1010 01 1001 01 01014 01 1001 01 1010 ... 10 1001
00 0010.

5. The 01 1011 01 1100 01 1011 01 1100 01 01005 01 1100 ... 10 1001
00 0010.

6. The 01 1101 01 0100 01 1101 01 0100 01 1101 01 10116 01 0100 ... 10 1001
00 0010.

7. The 01 0110 01 0111 01 0110 01 0111 01 0110 01 0111 01 10017 01 0111
... 10 1001 00 0010.

8. The 01 1000 01 1001 01 1000 01 1001 01 1000 01 1001 01 1000 01 01108
01 1001 ... 10 1001 00 0010.

9. The 01 1010 01 1011 01 1010 01 1011 01 1010 01 1011 01 1010 01 1011
01 01019 01 1011 ... 10 1001 00 0010.

10. The 01 1100 01 1101 01 1100 01 1101 01 1100 01 1101 01 1100 01 1101
01 1100 01 001010 01 1101 ... 10 1001 00 0010.

Once we have them flipped we decode the infinite sentence. Notice again
that each flipped binary sequence corresponds to a new adjective not in that
position. With this, no matter what row you choose, the adjective at the nth
position will be different than any sentence on each row of the infinite list.

1. The fat 01 0100 01 0100 01 0100 01 0100 ... 10 1001 00 0010.

2. The 01 0101 furry 01 0101 01 0110 01 0101 01 0110 ... 10 1001 00 0010.

3. The 01 0111 01 1000 grumpy 01 1000 01 0111 01 1000 ... 10 1001
00 0010.

4. The 01 1001 01 1010 01 1001 tiny 01 1001 01 1010 ... 10 1001 00 0010.

5. The 01 1011 01 1100 01 1011 01 1100 old 01 1100 ... 10 1001 00 0010.

11

6. The 01 1101 01 0100 01 1101 01 0100 01 1101 slim 01 0100 ... 10 1001
00 0010.

7. The 01 0110 01 0111 01 0110 01 0111 01 0110 01 0111 black 01 0111 ...
10 1001 00 0010.

8. The 01 1000 01 1001 01 1000 01 1001 01 1000 01 1001 01 1000 lazy
01 1001 ... 10 1001 00 0010.

9. The 01 1010 01 1011 01 1010 01 1011 01 1010 01 1011 01 1010 01 1011
grey 01 1011 ... 10 1001 00 0010.

10. The 01 1100 01 1101 01 1100 01 1101 01 1100 01 1101 01 1100 01 1101
01 1100 happy 01 1101 ... 10 1001 00 0010.

And with that, we have successfully decoded a unique sentence that is not
present in the infinite list, thus illustrating the diagonal argument.

You can verify that the new sentence is different than any sentence at any
nth position on each row. By flipping the bits and decoding we ensure each new
adjective is different from the one that was there originally in the nth position.
The first adjective is different than the adjective that was in the first position,
the second is different from the adjective that was in the second position and so
forth making sure that the new sentence is different than any sentence on any
row.

1. The fat black black black black ... 10 1001 00 0010.

2. The old furry old old old ... 10 1001 00 0010.

3. The fat lazy grumpy lazy fat ... 10 1001 00 0010.

4. The grey happy grey tiny grey ... 10 1001 00 0010.

5. The furry grumpy furry grumpy old ... 10 1001 00 0010.

6. The slim black slim black slim slim ... 10 1001 00 0010.

7. The old fat old fat old fat black ... 10 1001 00 0010.

8. The lazy grey lazy grey lazy grey lazy lazy ... 10 1001 00 0010.

9. The happy furry happy furry happy furry happy furry grey ...
10 1001 00 0010.

10. The grumpy slim grumpy slim grumpy slim grumpy slim grumpy
happy ... 10 1001 00 0010.

12

From the diagonal after flipping the bits and decoding we get the infinite
sentence below:

The fat furry grumpy tiny old slim black lazy grey happy... cat leaped.

This new sentence doesn’t match any of the original ones, demonstrating the
diagonal argument’s validity.

Definition 3 (Universal Algebra). A universal algebra is a structure A =
(A,F) where:

• A is a non-empty set called the domain or carrier set.

• F is a set of operations f : An → A, with n ≥ 0. Each operation is n-ary
where n is called its arity. The set F may contain operations of different
arities.

The important property of a universal algebra is that it is closed under its oper-
ations. That is, for any operation f ∈ F and any elements a1, a2, . . . , an ∈ A,
the result f(a1, a2, . . . , an) is also in A.

Definition 4 (Sentence Equality in Natural Language). Two sentences S1 and
S2 in natural language are considered equal if and only if they have the exact
same sequence of words. That is, word-by-word they are identical.

5 The Case for Infinite Sentences

Lemma 1 (Existence of Infinite Sentences). In a universal algebra modeling
natural language (denoted as NLA), there necessarily exist an infinite number
of sentences of infinite length.

Proof. Let NLA = (A,F) represent our natural language algebra where:

• A is a set containing all valid grammatical constructs, including words,
phrases, and sentences of the language.

• F is a set of syntactic operations that combine constructs to produce new
grammatical constructs.

Given that A includes words like adjectives and that there exists an oper-
ation f ∈ F that allows for adjective stacking (i.e., placing one adjective after
another), we can recursively apply f to generate sentences of increasing length.

For any adjective a ∈ A, applying f repeatedly, we get:

f(a) → f(f(a)) → f(f(f(a))) → . . .

This process can continue indefinitely, leading to sentences of infinite length.
Furthermore, since for any two distinct adjectives a1 and a2 the results

f(a1) and f(a2) are distinct (due to our definition of sentence equality), we can

13

generate an infinite number of distinct sentences of infinite length by varying
our choice of adjectives.

Thus, NLA necessarily generates an infinite set of infinite-length sentences.

Let’s suppose, for the sake of being extra sure, that we take the definition of
a sentence at face value. A sentence needs to be complete to be a sentence. The
problem here is when we consider sentences like the one below. If we were to
make it an infinitely long sentence, it would look like the next sentence. Viewed
this way, somebody can argue “that’s not a complete sentence. There is no verb
and it does not end.” To that, we say, let’s consider the third sentence below.
This sentence is clearly grammatical, even if we make it infinite. It has all the
elements already; we can call it a grammatical sentence even if it never ends the
list of adjectives.

• The black cat fell.

• The big black Adj Adj Adj. . ..

• The cat that fell is big black Adj Adj Adj. . ..

6 Natural Language Reacursivity and 2ℵ0

6.1 The Recursive Grammatical Structure

Definition 5 (Recursive Grammar G). Our grammar G is based on a template
that can be succinctly represented by [SP [NP][V P [NP]]]. Let’s delve deeper
into understanding each of its constituents. This in line with the current ac-
cepted linguistic theory developed by Chomsky (1957). However, for our current
purposes we can define [SP [NP][V P [NP]]] as a context free grammar.

Definition 6 (Sentence Phrase - SP). An SP stands for an entire sentence in
our grammar G. It essentially combines a Noun Phrase and a Verb Phrase to
form a coherent sentence: [NP][V P].

Definition 7 (Noun Phrase - NP). An NP is essentially a placeholder for
entities. In our grammar G, we limit ourselves to the following entities: {John,
Mary, Alice, Bob}.

Definition 8 (Verb Phrase - VP). A V P stands for actions or relationships. In
our grammar G, this can be further elucidated with examples like: {loves [NP],
hates [NP], knows [NP], sees [NP]}.

7 Definition of the Context-Free Grammar

Definition 9 (Context-Free Grammar for [SP [NP] [VP [NP]]]). A context-
free grammar G for the sentence structure [SP [NP] [VP [NP]]] is a 4-tuple
G = (V,Σ, R, S) where:

14

• V is a set of variables, V = {S,NP, V P,N ′, N,Adj,D, V }.

• Σ is a set of terminals. For the sake of this exposition, we will assume Σ =
{The,neighbors, big, black, fat, grey, cat, jumped}. In a real-world scenario,
Σ would encompass a much larger vocabulary.

• R is a set of production rules defined as:

S → NP VP

NP → D N’

N ′ → Adj N’ |N
N → cat | dog | bird

Adj → neighbors | big | black | fat | grey
D → The

V P → V |V NP

V → jumped | chased

• S is the start symbol, representing a sentence.

8 Infinite Adjective Stacking

In this section, we demonstrate that standard everyday syntactic structures can
generate an infinite list of sentences. Consider the sentence below:

The cat jumped.

This sentence, commonly used in everyday life, is finite. However, due to
the recursive nature of phrases, we can infinitely expand this sentence through
adjective stacking. An illustration is provided below:

1. The cat jumped.

2. The grey cat jumped.

3. The fat grey cat jumped.

4. The black fat grey cat jumped.

5. The big black fat grey cat jumped.

6. The neighbors big black fat grey cat jumped.

7. The Adj1Adj2 . . .Adjn+1 cat jumped.

15

One might consider listing all sentences of length n and pairing them one-
to-one with the natural numbers. However, as we will explore, this inherent
attribute of language makes it uncountable. Below, the tree representation of
the syntactic structure is provided:

S

NP

D

The

N’

Adj

neighbors

N’

Adj

big

N’

Adj

black

N’

Adj

fat

N’

Adj

grey

N

cat

V

jumped

The core structure of NP in our grammar G encompasses a single entity,
such as “John” or “Mary.” However, this simplicity belies the true depth of
linguistic expressiveness. Noun Phrases can be endlessly expanded by adding
more adjectives, creating structures like “the tall man in the red shirt from
the corner of the street.” Consider the sentence “The intelligent robot built by
the brilliant scientist won the chess tournament.” In this sentence, the Noun
Phrase “the intelligent robot built by the brilliant scientist” contains a cascade
of adjectives and additional Noun Phrases, each nested within the other. This
recursive expansion, while theoretically infinite, can be represented within the
finite framework of our grammar G. Below we provide a representation of the
infinite stacking:

16

SP

NP

Det

The

N’

Adj*

black Adj*

grumpy Adj*

old Adj*

fat Adj*

lazy Adj*

grey Adj*

curious Adj*

mysterious Adj*

sly Adj*

vivacious Adj*

jumpy Adj*

sleek Adj*

slender Adj*

noisy Adj*

hungry Adj*

wild Adj*

soft Adj*

furry Adj*

clumsy Adj*

...

N

cat

VP

V

leaped

17

8.1 Encoding Ajective Stacking

Our binary encoding scheme B accommodates this infinitude by offering a sys-
tematic way to represent these expanding structures. Each additional adjective
or embedded NP is assigned a unique binary sequence, ensuring that even in-
finitely expanding Noun Phrases can be mapped to distinct binary strings.

8.2 Binary Encoding for G

Definition 10 (Binary Encoding Rationale). To perform an in-depth analysis
of the infinite potential of G-sentences, we employ a binary encoding. The
primary reason for this is the dichotomous nature of binary numbers which
can clearly differentiate between the various components of our grammar. The
binary codes in the interval [0, 1] are defined as follows:

B =

{
x ∈ [0, 1] | x =

∞∑
n=1

an
2n

, where an ∈ {0, 1} for all n

}
.

Definition 11 (Binary Encoding Function B). B functions as a bijection be-
tween the elements of our grammar G and a set of binary strings.

We will assign to DPs the prefix 00, NPs the prefix 11, VPs 01 and Adjectives
10. And to each word a unique binary code. The binary code can be infinite.

Nouns Encoding: • The [DP] - 00 1100

Noun Phrases Encoding: • cat [NP] - 11 1101

Verb Phrases Encoding: • jumped [VP] - 01 1101

Adjective Phrases Encoding: • black [AP] - 10 00110100

• old [AP] - 10 10110110

• grumpy [AP] - 10 00100110

• .

• .

• .

To make sure we always get a new adjective when we flip the bit we will first
make the set of all AP, A. To each member of A we will assign the corresponding
category prefix and a unique finite binary code. Each binary code is unique.
Now we define a function that flips all the available binary code to have a new
set of binary codes. For example 10 0011001, would be 10 1100110. We leave
the category prefix alone. Now we reassign a new flipped binary code to each
adjective in A. Each a in A, a = ddddd, ddddd, is a set of two binary codes.
Both represent a. However, the second dddd corresponds to another adjectives
when not flipped. The same for the first binary code. This ensures that no
matter what we will get a new adjective when we flip the bits.

18

Remark. It is imperative to note that our binary representations have been
judiciously chosen to avoid any redundancy. This ensures the preservation of
the bijection of B.

8.3 Decoding Procedure

Definition 12 (Decoding Algorithm D). D is a well-defined mapping that takes
any given binary string from the set {0, 1}∗ and transforms it into its correspond-
ing linguistic counterpart in G.

8.3.1 Algorithm D

Given a binary string b of length n, execute the following steps:

1. Initialize an empty sentence S.

2. Initialize a pointer p at position 1 of b.

3. While p ≤ n:

(a) Based on the bit value at pointer p, classify the word type using the
prefix table.

(b) Using the classified type and subsequent bits, look up the correspond-
ing linguistic representation in the encoding table.

(c) Append the linguistic representation to sentence S.

(d) Move the pointer p forward by the number of bits corresponding to
the identified linguistic representation.

4. Once p > n, terminate and return the reconstructed sentence S.

Remark. The decoding algorithm’s precision depends on the non-overlapping
and deterministic nature of the encoding scheme. As a result, each valid encoded
string is associated with a unique sentence in G.

9 Properties of the Encoding Function

9.1 Injectivity of B

Lemma 2. The encoding function B : G → {0, 1}∗ is injective.

Proof. Let’s hypothesize that two distinct sentences S1 and S2 within the con-
fines of G share an identical encoding, denoted as B(S1) = B(S2). However, the
essence of our encoding scheme is its promise of distinctiveness for each element.
Consequently, such a scenario directly challenges the foundational premise of our
encoding scheme. As this situation is untenable, it becomes manifest that B is
inherently injective.

19

9.2 Surjectivity of B

Before we can proceed to demonstrate the surjectivity of B, it is crucial to
precisely understand the nature of its codomain.

9.2.1 Codomain of B

The codomain of B, which consists of all valid binary strings, is meticulously
crafted via our encoding scheme. A valid binary string in this context refers
to any binary sequence that corresponds to a legitimate sentence constructed
using grammar G.

Lemma 3. The encoding function B is surjective.

Proof. Let b be any valid binary string in the codomain of B.
Step 1: Using our decoding algorithm, we can map b to a sentence S in

grammar G.
Step 2: Now, by the definition of our encoding function, we know there

exists an encoding B(S) that maps S back to a binary string.
Step 3: Given that our encoding is consistent and unique, it follows that

B(S) = b.
Thus, for every valid binary string b in the codomain of B, there exists a

sentence S in G such that B(S) = b. This establishes the surjectivity of B.

9.3 Bijective Nature of B

With the injectivity and surjectivity of B established, we can now deduce its
bijective nature.

9.3.1 Bijection Proof

Corollary 1. The encoding function B is a bijection.

Proof. The function B has already been proven to be injective, meaning ev-
ery distinct sentence in G maps to a unique binary string. Additionally, we
have established its surjectivity, indicating that every valid binary string in its
codomain corresponds to a sentence in G.

Since B meets both these criteria — injectivity and surjectivity — it is by
definition a bijection between the set of sentences in G and the set of valid
binary strings.

Remark. The precision and reliability of our decoding procedure stems from the
unique and non-overlapping nature of our encoding mechanism.

20

10 Properties of the Encoding Function

10.1 Injectivity of B

Lemma 4. The function B, as defined from G to {0, 1}∗, is injective.

Proof. Let’s assume for the sake of contradiction that two distinct sentences
from G map to the same binary string. Given our construction where each
component of a sentence has a unique binary representation, this assumption
leads to a direct contradiction. Hence, it can be conclusively stated that B is
injective.

10.2 Surjectivity and the Decoding Function

Lemma 5. The function B, as mapped from G to {0, 1}∗, is surjective. More-
over, the decoding function D acts as its precise inverse.

Proof. For any string s in the codomain of B, the function D(s) invariably
generates a valid sentence in G. Hence, it can be deduced that B is surjective.

11 Main Result: Uncountability of G-sentences

11.1 Ensuring Syntactic Validity in Diagonalization

Definition 13 (Fallback Syntactic Patterns). We choose certain special pat-
terns, which are termed as fallback syntactic patterns. The chief aim of these
patterns is to ensure that any binary string created during diagonalization rep-
resents a valid sentence within G.

11.1.1 Fallback Syntactic Patterns

• SP can be constructed using any NP followed by any VP.

• VP can be built from any of the four VPs or from the fallback pattern {0,
1}.

• NP can be created using any of the four NPs or from the fallback pattern
{0, 0}.

11.2 Cantor’s Diagonalization

We have established the injectivity of B and the surjectivity of B with its inverse
function D. Now, we will utilize Cantor’s diagonalization argument to prove the
uncountability of sentences in G.

Theorem 11.1 (Uncountability of Sentences in G). The set of all sentences
generated using the recursive grammar G is uncountable.

21

Proof. To prove the uncountability of sentences in G, we assume, for the sake
of contradiction, that there exists a countable enumeration of all sentences in
G. Let’s list them as:

s1 = b11b12b13 . . .

s2 = b21b22b23 . . .

s3 = b31b32b33 . . .

...

Where each bn is a word and composed of possibly infinitely many binary
digits.

bn = d1d2d3 . . . dn+1 . . .

Now, we will construct a new binary string s′ using Cantor’s diagonalization
approach:

s′ = d1d2d3 . . .

where

di =

{
0 if bii = 1

1 if bii = 0

The string s′ is clearly different from each si because it differs in the ith

position. However, given our fallback syntactic patterns, we can ensure that s′

also represents a valid sentence in G.
This new sentence s′ contradicts our initial assumption of having an enu-

meration of all sentences. Thus, our initial assumption was false, and the set of
all sentences constructed using G is indeed uncountable.

12 Encoding Natural Language using Decimal
Numbers

In this section we will construct a more direct proof. I will assign random
adjective the numbers from 0-9. The create sentences where we have ”The
01234... cat jumped” which then could be decoded into ”The black big grumpy
long cat jumped.” By encoding adjectives as irrational numbers we can proof
more directly that they generate a set of uncountable sentences.

12.1 Adjective Encoding

We begin by encoding adjectives using the decimal digits. Let’s represent this
encoding with the function E : Adjective → {0, 1, 2, . . . , 9}. For instance:

22

E(”black”) = 0

E(”grumpy”) = 1

E(”happy”) = 2

E(”large”) = 3

...

12.2 Constructing Sentences

Sentences in our schema are of the form:

s = ”The ”a1a2a3 . . . ” cat jumped”

where each ai is a decimal digit corresponding to an adjective as per the
encoding E.

12.3 Proof of Uncountability

Theorem 12.1. The set of all sentences constructed using the grammar G and
the encoding E is uncountable.

Proof. Suppose, for the sake of contradiction, that the set of all such sentences
is countable. Then, there exists an enumeration:

s1 = ”The ”a11a12a13 . . . ” cat jumped”

s2 = ”The ”a21a22a23 . . . ” cat jumped”

s3 = ”The ”a31a32a33 . . . ” cat jumped”

...

We now construct a new sentence s′:

s′ = ”The ”d1d2d3 . . . ” cat jumped”

where

di =

{
0 if aii ̸= 0

1 if aii = 0

The sentence s′ is distinct from every sentence si in our enumeration because
it deviates in the ith adjective. However, s′ is still a valid sentence in G. This
leads to a contradiction, meaning our initial assumption that the set of sentences
was countable is incorrect. Therefore, the set of sentences constructed using G
and E is uncountable.

23

13 Uncountability in Natural Language

Theorem 13.1 (Uncountability of Natural Language Sentences). Any natural
language with property X, seen from a mathematical point of view, generates a
set of uncountable infinite sentences.

Definition 14 (PropertyX: Unbounded Modifiability). A natural language ex-
hibits unbounded modifiability if it has linguistic structures that can be extended
indefinitely without violating the syntactic or semantic rules of the language.

Proof. Assume a language L exhibits unbounded modifiability. This implies
that there exists at least one linguistic construct in L that can be indefinitely
extended. For the sake of argument, let this construct be represented as a
sequence S such that every element s in S corresponds to a linguistic entity in
L.

We can create a bijective mapping between each element s in S and a digit
in the set {0, 1, 2, ..., 9}. By Cantor’s diagonalization argument, given any
countable enumeration of sequences in S, we can construct a new sequence S′

that differs from every sequence in the enumeration.
As L allows for unbounded modifiability, S′ also corresponds to a valid

linguistic entity in L. Thus, L contains uncountable infinite sentences.

14 Another Argument in Favor of Infinite Sen-
tences

We might consider the point that sentences must terminate because they must
express a complete thought. The notion that a sentence must complete a
thought leads to the inclusion of infinite sentences.

Consider the example “The ratio of a circle’s diameter to it’s radius is
3.14159...”. In order to express this thought fully, the sentence must go on
forever. If it terminates, we have not expressed the thought fully.

Now consider the argument from another angle. Consider a series of sen-
tences enumerated below

The first digit is 1. (5)

The second digit is 4. (6)

... (7)

There is no argument that can be made that we cannot continue producing
sentences like this forever. There is also no reason why we cannot start a new
enumeration for a new number that also goes on forever. Allowing this list to
go on forever (i.e. the number of elements of a list to be infinite), we can put
each separate list in 1-1 correspondence to each number on the interval [0, 1],

24

which means that natural language can express an uncountable number of ideas
if the set of sentences can continue on forever, even if the number of possible
sentences themselves must be of countable cardinality.

However, if one simply replaces “.” with “ and ” in a list like this, one
immediately realizes that we must permit infinite sentences since we clearly
permit an infinite list of sentences like this.

One might also argue that we can only generate such sentences from math,
since the above example is so clearly mathematical. Let us dispel that notion.
Consider sentences of the form “The nth digit is k.” Where n ∈ n and k ∈ {0, 1}.
Let the base two representation of some arbitrary number in [0, 1] be b1b2 · · ·
with bi ∈ {0, 1}∀i. We list the sentence ith sentences a s “Bob said the paint is
red.” if bi = 0 and “Bob said the paint is green.” if bi = 1.

Bob said the paint is red. (8)

Bob said the paint is green. (9)

... (10)

Such sentences always terminate , and, so long as the sequence of sentences is
allowed to go on forever, can form a 1-1 correspondence to the numbers in [0,1],
which have cardinality 2ℵ0 . And, if we accept that we can conjoin the sentences
in order with “ then ”, must form uncountably many infinite sentences.

25

